Spinal cord response to altered fractionation and re-irradiation: radiobiological considerations and role of bioeffect models.

نویسندگان

  • Sanjay S Supe
  • K M Ganesh
  • T Naveen
  • Samuel Jacob
  • B N Sankar
چکیده

The aim of radiation oncologist is to implement an uncomplicated loco regional control of cancer by radiation therapy. The bioeffect of a physical dose depends on the nature of the tissue, fractionation scheme, dose rate and treatment time. The transformation of absorbed dose into a bioeffect dose is controlled by treatment variables and the radiobiological characteristics of the relevant tissue. Various bioeffect models have been proposed to predict the biological effect of radiotherapy treatments. Dale has proposed extrapolated response dose (ERD) equations for external beam therapy, intracavitary brachytherapy and interstitial brachytherapy. Within the context of the LQ model, the parameter which quantifies the overall biological effect on a given tissue is the biologically effective dose (BED) which is obtained by applying repopulation correction to ERD (Orton). Thames proposed the total effect (TE) concept based on the incomplete repair LQ model which accounts for the biological effect of a fractionated course of radiotherapy. Spinal cord myelitis limits the dose to tumours in the head and neck, thoracic and upper abdominal regions resulting in reduction of tumour control probability. Radiation myelopathy is one of the most devastating complications of clinical radiotherapy. Treatment techniques that are designed to minimize the risk of spinal cord injury are likely to underdose the tumour consequent failure to control the disease. Since radiation myelopathy results in severe and irreversible morbidity, it is important to establish the tolerance dose of the spinal cord. A number of patients have recently been reported to have developed radiation myelopathy following hyperfractionated accelerated radiotherapy. As the survival rates of patients increase, radiation oncologists are more frequently faced with the problem of treatment of late recurrence or second tumours situated within or close to previously treated site. A rationale for taking a decision in treating in such a condition is even more complex than the original condition and requires knowledge of the kinetics of decay of occult injury of the previous treatment. To test the validity of ERD, clinically reported data of altered fractionation to the spinal cord for 7 patients reported by Wong et al, Saunders et al and Bogaert et al, were analysed, ERD values were calculated and compared with compiled clinical literature data of 3233 patients for the incidence of spinal cord myelitis reported by Cohen and Creditor, Wara et al, Abbatucci et al and Jeremic et al for conventional fractionation. ERD values were estimated with alpha/beta of 2.5 Gy for the conventional and altered fractionation data. To test the validity of TE concept for clinical data of re-irradiation tolerance of the spinal cord, the data of the 22 patients compiled by Nieder et al were used. Clinical data compiled from the literature of Cohen and Creditor, Wara et al, Abbatucci et al and Jeremic et al, were used for comparison.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiobiological Considerations of Re-irradia- Tion Tolerance of the Spinal Cord

Re-irradiation tolerance of the spinal cord depends upon the volume of the spinal cord irradiated, the total dose, the dose per fractional, the elapsed time between the treatments and the region of the spinal cord involved. Clinical data on the retreatment tolerance of the spinal cord are sparse and inconclusive. Radiobiological laboratory evidence has indicated the presence of long term recove...

متن کامل

Tumour radiobiology beyond fractionation

Historically it has been shown repeatedly that single high doses of radiation do not allow a therapeutic differential between tumor and critical normal tissues but dose fractionation does. The purpose of conventional dose fractionation is to increase dose to the tumor while preserving normal tissue function. Tumors are generally irradiated with 2Gy dose per fraction delivered daily to a more or...

متن کامل

Radiobiological Model-Based Comparison of Three-Dimensional Conformal and Intensity-Modulated Radiation Therapy Plans for Nasopharyngeal Carcinoma

Introduction: Radiobiological modeling of radiotherapy plans are used for treatment plan comparisons. The current study aimed to compare the three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) plans for nasopharyngeal cancer using radiobiological modeling. Materials and Methods: This study was conducted on 10 patients with nasopharyngeal carci...

متن کامل

Chronological response of prostacyclin changes to moderately low doses of radiation in Rat cervical spinal cord

Background: Study of vascular and its secretory profile changes is an important issue in pathogenesis of radiation myelopathy. This paper reports the prostacyclin concentration changes after low-moderate doses of X-irradiation within a short period of time. Materials and Methods: Cervical cords of Wistar rats were irradiated to doses of 0.5, 1, 2, 4 and 6 Gy X-rays. After 24 hours, 2 and 13 ...

متن کامل

Stereotactic body radiotherapy for spinal and bone metastases.

Stereotactic body radiotherapy (SBRT) can deliver high radiation doses to small volumes with very tight margins, which has significant advantages when treating tumours close to the spinal cord or at sites of retreatment. When treating spinal tumours, meticulous quality control is essential with effective immobilisation, as dose gradients at the edge of the spinal cord will be steep and excessiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cancer research and therapeutics

دوره 2 3  شماره 

صفحات  -

تاریخ انتشار 2006